Exploring Finite Time Lyapunov Exponents in Isotropic Turbulence With the Johns Hopkins Turbulence Databases

Perry L. Johnson and Charles Meneveau
Department of Mechanical Engineering, Johns Hopkins University

Johns Hopkins Turbulence Databases (JHTDB)

- http://turbulence.pha.jhu.edu/
- access via web services
- Fortran, C, Matlab, HDF5 cutout
- built-in functions
 - e.g. getVelocity, getPressureHessian
 - interpolation (time & space)
 - finite-differencing
- Currently hosts four datasets:
 - Isotopic: 1024^3
 - Magnetohydrodynamics: 1024^3
 - Channel: 2048 x 512 x 1536 x 1997
 - Mixing: 1024^3 x 1012

Homogeneous Isotropic Turbulence (HIT)

- forced incompressible Navier-Stokes equations in a (2π)^3 periodic box
- canonical problem for studying fluid turbulence

Finite-Time Lyapunov Exponents (FTLE)

- using velocity gradients, A_j = \partial u_j/\partial x_i, along fluid particle trajectories
- \text{dx/\partial t} = u(x,t), \quad x(t) = X, \quad \partial D/\partial t = AD, \quad \gamma(T; X, t_0) = \frac{1}{T} \ln(\sigma(T))
- exponential rate of separation of neighboring fluid particle trajectories
- deformation of small particles by turbulent flows
- identify coherent motions in fluid turbulence
- converge to the Lyapunov exponent, \gamma(T \rightarrow \infty) \rightarrow \lambda_f

Extracting FTLEs from the JHTDB HIT Simulation

- Initialize particle locations x(t_0) = X
- Loop through time:
 - Use getVelocityGradient database function to retrieve A_i(x, t) = \partial u_i/\partial x_k
 - Use getVelocity function to advance trajectory to next time step, x = u(x, t)
 - Use second simulation to advance D along each trajectory, D = AD
 - Periodically use Gram-Schmidt (QR decomposition) to compute orthogonal stretching rates
 - \gamma_i = \frac{1}{T} \ln(R_{ij})

Lagrangian Coherent Structures (LCS)

- technique for identification of coherent fluid motions
- attracting/repelling material surfaces
- ridges in the FTLE field \gamma(X, t_0) for a fixed integration time T
- JHTDB database example:

Large Deviation Formalism

- describes the behavior of the PDFs for sums of i.i.d. variables
- applies to FTLEs
- extends the central-limit theorem for \gamma(T \rightarrow \infty) by introducing the Cramér function, S(\gamma)

\[
p(\gamma, T) \sim \exp(-TS(\gamma))
\]

Effect of Rotation

- Advance deformation tensor with strain-rate tensor, D = SD

Large Deviations for Joint-Statistics

- the large deviation formalism is easily extended to joint statistics

\[
p(\gamma_i, T) \sim \exp(-TS(\gamma_i, \gamma_j))
\]

Conclusions

- {\lambda_1, \lambda_2, \lambda_3} = {0.114, 0.029, -0.143}, \lambda_1 : \lambda_2 : \lambda_3 \approx 4 : 1 : -5
- Bias for both weakly and strongly deformed particles: \gamma_2 > 0.
- Without particle rotation, deformation approximately doubled.