Introduction

Are these two features correlated?

Some measure is necessary!!

The idea of Kernel

Allows to account for correlation of neighbour positions rather than the same only!

Problem genome is too long!!!

We have used the value of the distance between the features.

Some control is necessary!!

Correlation

Cohesine vs CTCF

H3K36me3 vs H3K4me1

Thee-way correlation: projection.

Projection correlation is intended for analysis correlations of two profiles \(fg\) with exclusion of correlation of these profiles with third one (confounder)

\[
f(x) = f(x) - a(x) \leq af
\]

Correlation of H3K4me3 with mRNA-Seq, both projected on H3K4me1:

Tool

- Very fast (3 min per genome)
- Works with quantitative and qualitative data
- The kernel-based approach allows complex geometry (shifts, smoothing, etc)
- Along with predefined kernel, calculates the results for set of standard shifts.
- Produce correlation track that can be used as input for further correlation (liquid association)
- Allows also to scale and sum profiles and compare profile combinations

http://stereogene.bioinf.fbb.msu.ru

https://github.com/favorov/stereogene

Tissue clustering (the tree)

- 9 marks, 111 tissues
- For each mark we build a distance matrix, based on pairwise correlation between all tissues.
- Based on the matrix, we build hierarchical cluster tree
- For each pair of tissues, we count the maximal level of common subtree containing them both (divergence level), or the minimal path length inside the tree
- To count the mean divergence level for the pair of tissues, we average the DL in all trees that contain the pair
- Then we build the new distance matrix
 1) mean(trees) level and run the hierarchical clustering again

Method

Correlation:

An equivalent transformation of the previous integral:

We can use another kernel function instead of delta-function:

For the whole genome: Mann–Whitney U test p-value

For each real frame: permutation p-value and FDR q-value.

Cross-correlation function on coordinate shift shows typical picture of mutual positioning of two tracks

Used marks:

H3K4me1, H3K4me3, H3K9me3, H3K9ac, H3K27me3, H3K27ac, H3K36me3
Problem: genome is too long!!!

We have a set of values!
Q1 Q2 Q3...
Are the features correlated?
Some control is necessary!!!