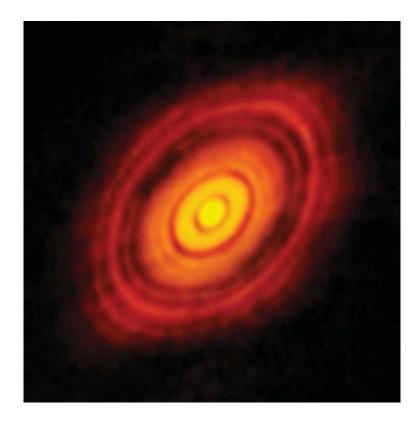
Current Data Practices & Issues

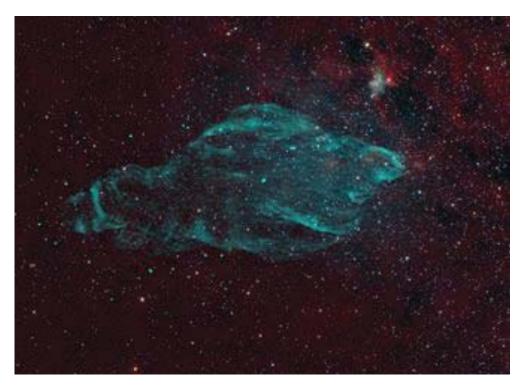
National Radio Astronomy Observatory

Brian Glendenning Data Management and Software Department

Atacama Large Millimeter/submillimeter Array Karl G. Jansky Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array



NRAO: Four best-in-class radio telescopes



Images

ALMA: HL Tau Protoplanetary Disk Estimated press circulation: 0.5B

VLA: Manatee Nebula (W50)

NRAO Telescope Suite

- Observing measurements
 - Premiere radio telescope system in the world
 - Tremendous breadth!
 - Wide Frequency Range: <I 1000 GHz</p>
 - Wide Size Scale Range: 0.0002 arcsec 10 arcmin
 - Continuum & Spectral (10,000 channels typical for spectral)
 - Measures all 4 polarizations
- Observing System
 - Hundreds of peer reviewed PI proposals (10 100 hours typical, VLA Sky Survey = ~5000 hours)
 - Oversubscribed, heavily for ALMA (pent-up demand)
 - Files in (proposals, programs), raw data out

Commissioning automated data processing

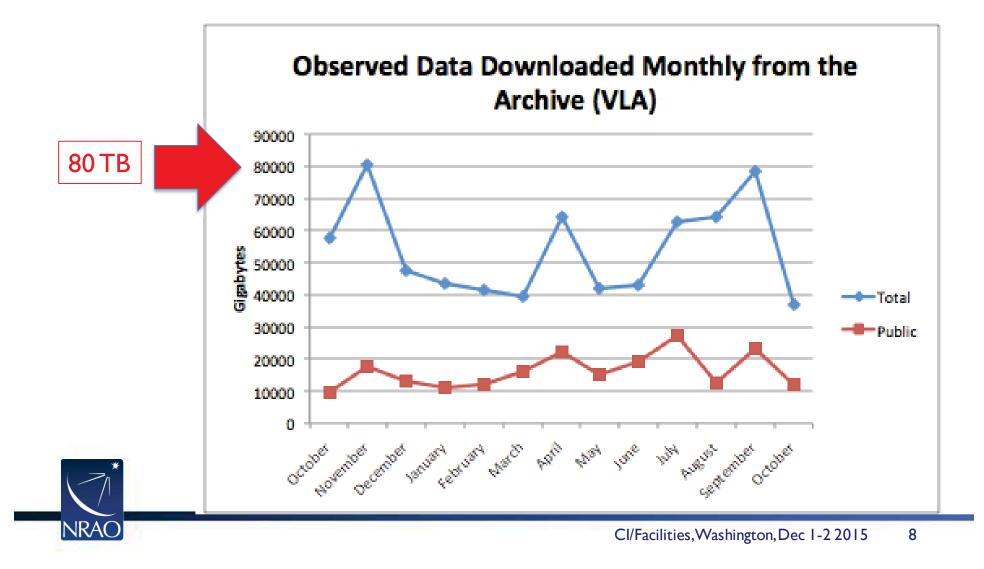
History: NRAO and NSF CI

- NSF Internet support has fundamentally enabled modern NRAO operations
- Relationship with HPC centers has been intermittent
 - NRAO data is too big to be easy but too small to be interesting
 - Occasional contacts going back to the late 1980s

Questions

2013 NSF Large Facilities Workshop

- What should NSF Facility "Data Management" best practices be?
 - Can/should this be formalized?
- How do we keep data management systems in construction project scope?
 - Often thrown out to obtain only modest cost savings
 - Construction projects often dominated by grizzled veterans
 - Data Management = chart recorder + HP-HC
 - Can the various national HPC centers/networks play more of a role?
 - Gap: big-ish data problems, hard for facility but not interesting for HPC research
- What metrics should we use?


Data Volumes - today

- Raw Data
 - Hardware capabilities: ALMA, GBT, VLBA ~I GB/s = 30 PB/y
 VLA 16 GB/s = 0.5 EB/y
 - Actual data ingested into NRAO Archive (all telescopes) ~I PB/y
 - Limited by: scientific need (e.g., most sources vary slowly), but also:
 - NRAO budget,
 - User pain of dealing with large data sets,
 - Size of in-house/user computational facilities,
 - Network pipe sizes, ...
 - Possible game changer (if real): rapidly varying sources (ms timescales)
- Resulting Images
 - Typical: 1000³ (Gpix) (x 1-4 polarizations)
 - Coming: > 10,000³ (Tpix),

· VLA Sky Survey (if all images, channels kept): 6 Ppix

Data retrieval per month (VLA)

Frank Press, President Carter's Science Advisor

- We have all the data for all the telescopes for all their existence
 - And the data is still accessible
 - Need the bits, knowledge of the formats (80 character card images!, ¹/₂" tape record lengths!), and comprehension of the data models (software, humans)
- Had we given the raw data to a third party, would we still have it? How can we be confident we will still have it in 35+ years?
 - Feared path:

NRA(

- "This is really important, we'll help!"
- "You don't need as much budget now!"
- I0 years later: "Something else is really important!!"

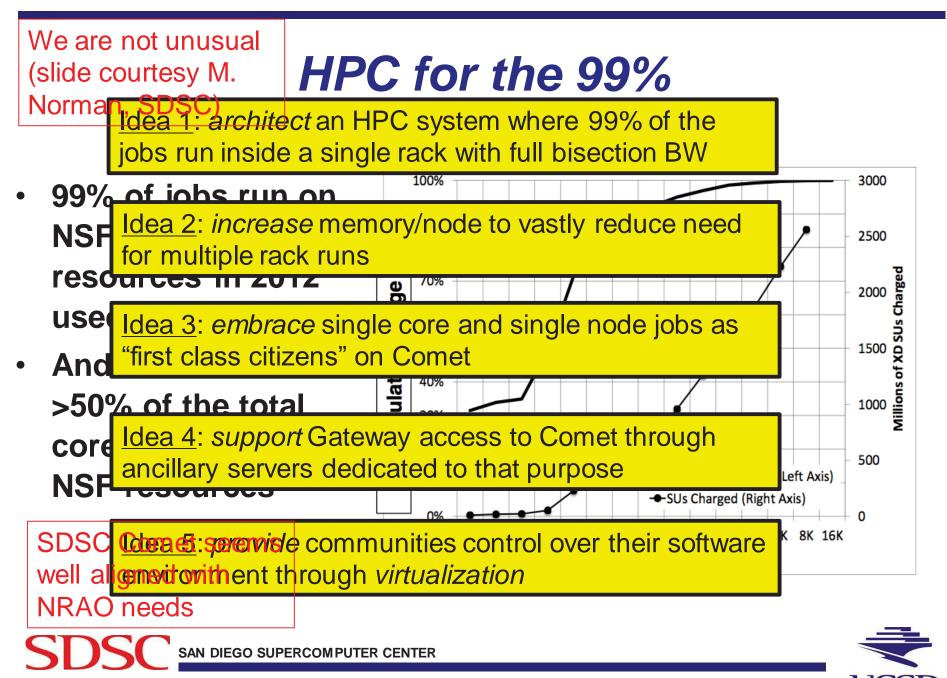
Current In-house Computing

- We have several in-house computational/Lustre (I/O) cluster combinations use for various telescope and science operations purposes, as well as general community use (>200 user groups / year)
 - Big users tend to have their own similar facilities, many small users rely on NRAO
 - ~150 16 core nodes, 3 PB Lustre storage
- Parallelization advancing, nearly through the entire processing chain
 - We are more high-throughput than high-performance computing at present
- Efficient, effective, ..., but:
 - At the limit of what we can support
 - Limits data rate, reprocessing, hard for users to replicate

Example: VLA Sky Survey – So many pixels

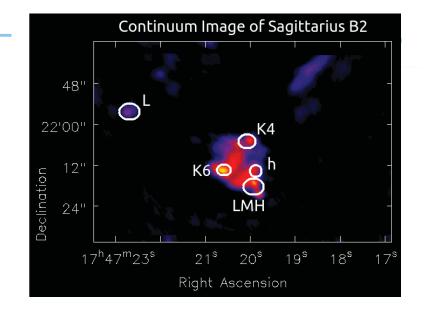
- ALL-SKY at 0.6" (36Mpix/deg²) :
 - 34000 deg² : I.22Tpix = 4.9TB per "image"
 - Continuum : 9 images = 44TB (plus 7 images, 3 epochs = 100TB)
 - Spectral Cubes : (1024ch, 5 images = 25000TB = 25PB)
 - 5.5 Ppix! This would be a lot of image pixels to sift through!
 - NRAO CANNOT AFFORD THIS! must compress <1%
 - Or calculate on demand (high compute or long latency)
- Computing estimate:
 - Coarse cubes (14 planes): 10-20,000 core-days per pass
 - Probably several passes per epoch, at least initially
 - ~OK
 - Fine cubes (900 planes ideally): x64

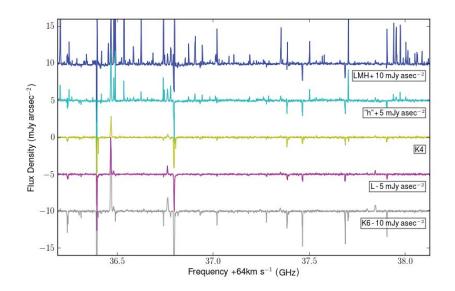
• Not feasible for NRAO



Computing comments

- Why do >200 user groups/year use our tiny facilities?
 - Because it's easy (software installed, logins, easy access to archive data, interactive use allowed)
 - Any alternate system has to be easy
- Our algorithms tend to be high in I/O / FLOP, HPC centers tend to be high in #cores / storage
- Lots of users each of whom need a relatively modest number of cores
 - Get data I-2 times per year, "bursty"
 - Increasing automation, but still a lot of interactive use
- Far more buzz in observational astronomy about Amazon AWS than (e.g.) XSEDE
- Many international aspects to astronomy software; US only APIs are a problem
- Our software packages have long lifetimes (20+ years is the "new" one)

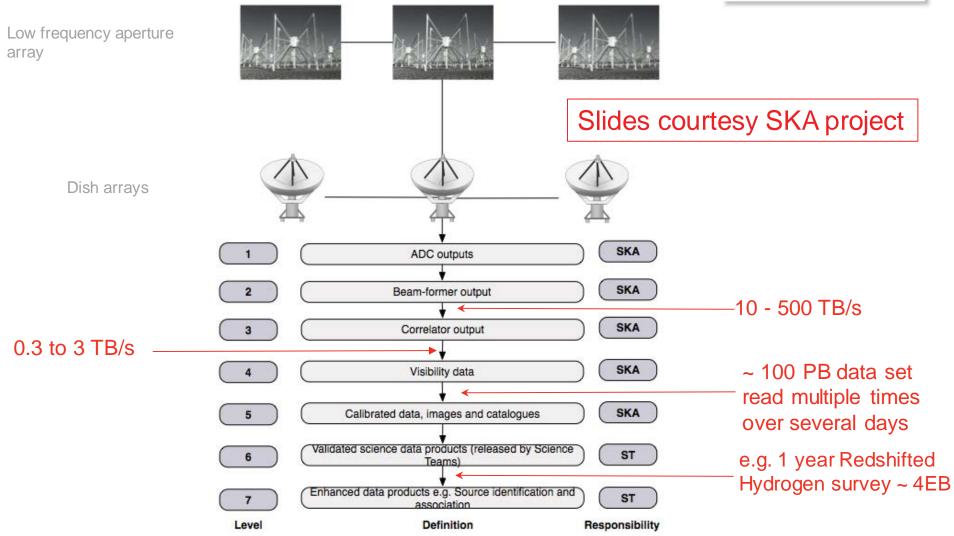



Good and bad – embeds a lot of knowledge, can be hard to adapt

Visualization

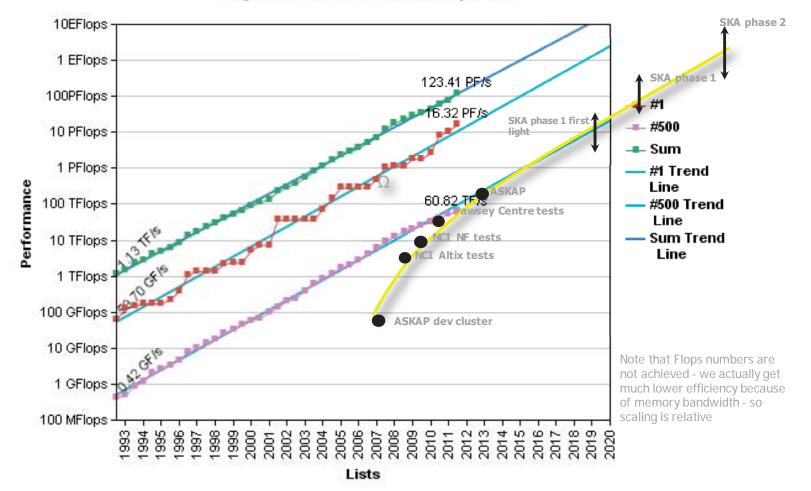
- We typically have 3+D images a spectrum at every pixel
- Complex physics, chemistry, ...
- Terapixel images will become commonplace
 - All sky cubes = petapixel
- No good plan in place for visualizatioh, modeling
 - Both big data & visualization aspects
 - We have surveyed existing tools

Radio Astronomy - Future


- Square Kilometer Array (and precursors) in various stages of construction, pre-construction
 - No formal US involvement
 - Australian Pawsey supercomputing centreaimed at the Australian precursors
- NRAO is participating in science/technical discussions of "next generation" VLA, (~10x antennas, ~10x antenna separation)
 - Comple, entary to SKA, ALMA
 - Idea is to propose to "Astro 2020" process for construction start next decade
 - ngVLA will require Exaflop computing
 - We will need partner(s) to develop a credible proposal and then build the telescope

• Industrial scale; no possibility of building in-house

Data flow



Exploring the Universe with the world's largest radio telescope

SKA data processing rates

Projected Performance Development

Exploring the Universe with the world's largest radio telescope

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc

www.nrao.edu

CI/Facilities, Washington, Dec 1-2 2015 18

.

3