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Baltimore overview
• Baltimore has lost 1/3 of its population since 1950
• Today, we have 16,500 boarded up vacant buildings
• Of these, 13,000 are in distressed markets 
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data science

flexible data platform

predictive modeling & 
optimization

1
data fusion

geometry + history
highly extensible



social science

modeling transition

estimating 
externalities

evaluating policy
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government

rapid response queries 

assisting with strategic 
investments

mapping 
“unoccupancy”
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Data in Baltimore
 OpenBaltimore

 Hundreds of public datasets online 
http://data.baltimorecity.gov

 Plus more administrative data



DHCD’s Data Infrastructure
 Dept. of Housing & Community Dev

 Study changes over time
 Support decision making

 Statistics to help?
 Inference & prediction

M. Braverman
J. D. Evans



Jim Gray’s 20 Questions
 Data-driven studies

 Low-level questions
What we see

 High-level questions
 Help hone policy making
 Interventions



Built a Unique Solution
 Database of Baltimore City

 Geospatial info for all parcels
 Time history of real properties

 Easily extendable
 On the IDIES’s Data-Scope
 Novel indexing for fast links



Mapping Vacancy
2010 2015

Phil Garboden



Mapping Vacancy
2010 2015

Phil Garboden



Clustering of Vacancy
 Probability of finding a

vacant next to another

 Quantitative comparison
 Over time
 Across town



Similar Neighborhoods
 Similarity graphs & eigenmaps



What is a Neighborhood?
 Are neighborhood boundaries meaningful?
 Better grouping of houses?

 Trends on a finer scale



Collapsed Vacants



Collapsed Vacant
 Ends of contiguous blocks of rowhomes

 Alleys, gaps and demos break rows
 Need “sub-blockface” analysis

 Time-dependent



Neighborhood Revitalization
 Modeling urban transitions

 What factors catalyze
reinvestment?

 Disinvestment?
 Innovative use of data

 New sources of information
 Zillow? Cell phone usage?
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Strategic Investments
 Governor’s budget

 Unprecedented $75M
 City scheduling

 Spring 2016
 JHU map of targets!



Strategic Investments
 Combinatorial Optimization

 Improve some objective, e.g.,
or

 Within a limited budget

 Best objective? How to solve?



Optimize the Impact
 Different objectives

 Same budget

 Advanced tools 
 For decision makers

Lenny Fan
Amitabh Basu
Phil Garboden





Price
 Longitudinal data
 Environment
 Prediction
 Machine 

Learning



Ambitious Next Steps

Ben Seigel (21CC)
Katalin Szlavecz
Ben Zaitchik
Keeve Nachman
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Spatiotemporal Multi-Level Modeling
 Hierarchical Bayesian statistics
 Include all aggregated data
 Joint inference for the

 Individual houses and
 Ensemble distributions

Mengyang Gu



Predicting Unoccupancy
 Time-series data 

 Water usage
 BG&E usage
 USPS 

 Proxy for occupancy

Phil Garboden
Hana Clemens



Satellite View
 Missing roof?
 Blue tarp = holes?



 Looking up!
 Astronomy images
 Blurred exposures

 We solve for it
 For high-res details

Image behind the Atmosphere

Coadded Image
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Image behind the Atmosphere
 Looking up!

 Astronomy images
 Blurred exposures

 We solve for it
 For high-res details

Deconvolved Image
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Image behind the Atmosphere
 Looking up!

 Astronomy images
 Blurred exposures

 We solve for it
 For high-res details

Hubble Image
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Differential Chromatic Refraction
 Even colors!
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At the Heart…
 Applied Math & Stats

 Data mining
 Statistical modeling
 Machine learning
 Optimization
 Bayesian inference

 Data-Intensive Science
 Hardware platforms
 Software solutions
 Streaming algorithms
 Database technologies
 GIS tools & indexing



Limitations of Machine Learning
 Many methods to choose from

 And more knobs to tweak
 Latching on known features

 Manual intervention to refine
 What’s left in the data?

Missing the Human in the Loop!



Use the Brain’s Detection Power



Rapid Serial Visual Presentation
 Current state-of-the-art is binary classification

 Target / Distractor
 We look for the interesting

 Dynamic behavior of brain: 
looking for new

Nick Carey



Human-Machine Co-Learning

 Hide wireframe of 
3D cube in high-D
 Looks like noise
 Random projections
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Summary

 Promising first steps
 With direct applications already deployed

 Common data infrastructure & approaches
 Surprisingly similar, e.g., across astro/city

 Ambitious future plans
 Need help! And need more data…
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