

AstroPath: Astronomy Meets Pathology

Alex Szalay, Janis Taube and the AstroPath Team

in collaboration with Akoya Biosciences

AstroPath: Atlas of Cancer Cells

- Astronomy meets Pathology
 - Project started by Prof. Janis Taube (JHMI BKI) and Alex Szalay (JHU IDIES)
- Studying the tumor microenvironment to understand cancer immunotherapy
 - Spatial interactions of activated T cells and tumor near the tumor boundaries
- Transitioning to the "industrial revolution"
- Goal: increase data collection by a factor of >1,000
 - 400GB mosaic of 35-band multiplex images/slide (from 10 to 2000 images/slide)
 - 7 markers (lineage + PD-1, PD-L1), more markers via additional panels
 - Use a farm of automated microscopes => 2PB/year
 - Heavy use of parallel processing
- Parallels sky surveys (as of 20 years ago)
 - "Disruptive assistance" from astronomy to pathology
 - Using techniques astronomers learned the hard way (flat field, unwarp, calibrate)
- Tumor boundaries, cell geometries represented as GIS polygons
- Dynamic computation of nearest neighbors, spatial relations
- Interactive viewer like the SkyServer, or Google Maps
- Processing workflows mostly automated
- Working on validating a large enough training set for Deep Learning
- Databases linked to SciServer, collaborative Jupyter, Keras/TensorFlow, R
- Collaboration with Akoya BioSciences (microscopes)

SD35

Sloan Digital Sky Survey

"The Cosmic Genome Project"

- Started in 1992, finished in 2008
- Data is public
 - 2.5 Terapixels of images => 5 Tpx of sky
 - 10 TB of raw data => 100TB processed
 - 0.5 TB catalogs => 35TB in the end
- Database and spectrograph built at JHU (SkyServer)
- Now SDSS-4, data served from JHU

Skyserver

Prototype in 21st Century data access

- 2.8B web hits in 16 years
- 414M external SQL queries
- 7,000 refereed papers and 450K citations
- 5,000,000 distinct users vs. 15,000 astronomers
- The emergence of the "Internet Scientist"
- The world's most used astronomy facility today
- Collaborative server-side analysis done by 9,000 astronomers
- Morphed into the SciServer recently

Jim Gray

From Stars to Cells

- Strong parallels between medicine today and astronomy 25 years ago
- Stars and galaxies are like the cells in pathology
 - Multicolor photometry, image segmentation, locality
 - Spatial relations, spatial searches, outlines
- Deep links to the raw files
- Astronomy lessons:
 - Statistical analyses and collaboration easier in DB than flat files
 - Find a common processing level that is "good enough" and earn the TRUST of the community
 - Automation is needed for statistical reproducibility at scale
 - Scaling out was much harder than we ever thought
 - Moving many terabytes of data is hard

This will require:

- Bespoke approaches to cell segmentation, image analysis, and data management
- Focus on scaling workflow

- 1226 High Powered Fields, 200GB / slide, 1344x1004 pixels, at 0.5μ /pix
- 1.6B pixels x 35 narrow band filters = 60B pixels /slide
- Overlaps provide repeated segmentations and measurements for intrinsic validation and quality control
- 800-1000 times more data collected for each slide

Geometry: Overlaps and Primary Regions

• Primary area is the part of a field closest to its center

M12_1

- These form a seaml tiling of the whole a
- Cells detected here
 the statistical samp
- Overlaps are observed with a set of the se
- Secondary cells server
 QA tests to determi
 M31
 M32
 M31
 M32
 M33
 M33
 M34
 M34
 M34
 M34
 M34
 M34
 M34

Rationale Behind Overlaps

- Overlaps provide independent photons from the same cells
- Repeated measurements able to determine uncertainties in individual cell fluxes
 - More overlaps: better signal-to-noise
 - Too much overlap: waste of resources
- Measuring systematic errors
 - Microscope systematic errors largest in the corners: overlaps give information on how to correct them

Questions:

- How can we justify how much overlap should we take
- Overlaps must be big enough to characterize microscope model
- But too much overlap is costly
- Statistical error 1/sqrt(N), good balance between primary and secondary objects
- How can we use it in practice

20% is the optimum!

Using the Overlap Areas for Quality Control

- Signs of uncorrected image warping ("pine
- Developed lens model and corrected the

Automated Alignment of Image Mosaics

- The Vectra 3 microscope has a positioning "jitter" (3-6 pixels)
- Solved for optimal relative shifts of each pair of overlapping fields
- Consider each shift as a spring
- Pin down center, and let physics work -> equilibrium (minimum energy)

Improve Flat Fielding

- Originally: smoothed stack of 8,000 raw HPF images in the 35 filters
- Range of flat field correction aligns with the broad- and narrow filters

Preprocessing Workflow

manual matlab dbload

DB Hiearachy with Two-Phase Load

Imaging Improvements

- Switching to Python packages from Matlab
- Better Flatfield model (M. Eminizer)
- Better Warping corrections (M. Eminizer)
- Capture all the Akoya XML metadata (R. Wilton)
- Substantially improve image stitching accuracy (H. Roskes)
- Cross-registration of different imaging modalities (J. Doyle)
- Built whole slide visualization and used it for QA (D. Medvedev)
- Data processing + loading is almost fully automated with multi-level logging, arbitrarily parallel design, increasing use of GPUs (B. Green)

Spatial Features in the DB

- Represented as spatial polygons, using GIS grammar
- Geometries represented
 - HPF outlines and primary regions
 - Manual annotation of good tissue
 - Manual annotation of tumor boundaries
 - Automatic tumor boundaries
 - Membrane outline for each cell
 - Nucleus outline for each cell

• Distances and areas

- Each cell has its signed distance from tumor boundary computed
- Areas of different buffers around tumor boundary precomputed
- Fractional area of each HPF inside good tissue and tumor computed

Annotations and Buffer Regions

Precomputed Neighbors

SQLQuer	y14.sql - B(WIN\aszalay1 (61))* 💠 🗙	SQLQuery13.sql - B(WIN\aszalay1 (57))*	SQLQuery12.sql - B(W
1	CREATE TABLE Neighbors (
2	8		
3	/T the precomputed neighbors	of each cell within 100 pixels	
4			
5	sampleid int NOT NULL,	/D sampleid	
6	c1 bigint NOT NULL,	/D cellid of center	
7	c2 bigint NOT NULL,	/D cellid of neighbor	
8	ptype1 tinyint NOT NULL,	/D enumerated phenotype of c1/E	Phenotyope
9	ptype2 tinyint NOT NULL,	/D enumerated phenotype of c2/E	Phenotyope
10	pexp1 tinyint NOT NULL,	/D enumerated expression of c1	
11	pexp2 tinyint NOT NULL,	/D enumerated expression of c2	
12	dist float NOT NULL,	/D centroid distance to neighbor	/U pixels
13	qt1 int NOT NULL,	/D PD-1 markup quantile for c1	
14	qt2 int NOT NULL,	/D PD-1 markup quantile for c2	
15	pt1 int NOT NULL,	/D PDL-1 markup quantile for c1	
16	pt2 int NOT NULL,	/D PDL-1 markup quantile for c2	
17	tdist1 real NOT NULL,	/D tumor distance of c1/U pixels	
18	tdist2 real NOT NULL,	/D tumor distance of c2/U pixels	
19	r bigint NULL	/D rank of neighbor by increasing d	istance
20)		

ContactNeighbors

```
insert ContactNeighbors with (tablock)
select n.*
from Neighbors n, CellGeom a, CellGeom b
where n.c1 = a.cellid
  and n.c2 = b.cellid
  and n.dist<=50
  and n.sampleid=@sampleid
  and a.btype=0
  and b.btype=0
  and a.geom.STDistance(b.geom)<2</pre>
```


Data Analysis Developments

 Random samples extremely useful for estimating cell density in complex geometries

- E.g. how far inside the regression area, and how far from tumor
- Now added precomputed distance from regression boundary
- Perform two queries and a division
 - i. Build histogram of distances of the real cell count
 - ii. Build identical histogram of random cells with known density
 - iii. Their ratio is the density of the cells of interest in each distance bin
- Works with arbitrary geometries
- Working to introduce more advanced spatial statistics and ML tools
 - Correlations, mark-correlations, neighbor statistics, tSNE, UMAP
- Starting to look at genomics integration (w. Alex Baras)

CellView: Designed for Speed

- Images built from hierarchical DeepZoom tiles (256x256)
- What is different from others that we use a lightweight client, all heavy lifting is done server-side
- We store the tiles of the original 8 component layers
- They are mixed on the server, using a user-defined color mixing
- These can be saved as presets

SciServer Integration

- The database is now linked to the SciServer (JHU data analytics platform)
- Collaborative sharing
- Enables easy data aggregation
 - With genomics etc
- Each user can have their own DB for value added data, linked to main database
- Various options:
 - CasJobs/MyDB (SQL access)
 - Compute (Python, R)
 - Compute Jobs (queues)
 - Preconfigured containers with AI
 - PyTorch
 - Tensorflow
 - Choice of Python2, Python3
 - Geo (spatial tools)

sciserver.org

Current data in the database

- 3 Cohorts, 235 slides
- 84,320 High Powered Fields
- 226M detected cells
- 97M unique cells
- 3.5B neighboring cell pairs precomputed
- 8.7 trillion pixels (whole SDSS was 6.5 Tpixels!)
- Additional 200+ slides already scanned with multiple tumor types, processing in various stages

Conclusions

- Early results indicate that mIF assays are reproducible
- Found a predictive biomarker for immunotherapy using AstroPath (Science, June 11, 2021)
- Next generation of tissue-based biomarkers are likely to be identified using large, well-curated datasets
- Established a standardized protocol to process thousands of tissue samples per year on many microscopes
- Developed a scalable facility to produce petabytes of robust tissue imaging data on par with large sky surveys
- Working towards an Open Cancer Cell Atlas with many billions of cells

Acknowledgements

Taube Lab members

Sneha Berry, MS Nicholas Giraldo, MD, PhD Benjamin Green Tricia Cottrell, MD, PhD Liz Engle, MS Haiying Xu

Aleksandra Ogurtsova

BKI collaborators

Drew Pardoll, MD, PhD Robert Anders MD, PhD Suzanne Topalian, MD Evan Lipson, MD

Astronomy/IDIES

Heshy Roskes, PhD Maggie Eminizer, PhD Richard Wilton, MD Joshua Doyle, MD Sahil Hamal, CS Dmitry Medvedev, CS Josh Rabichaud (UG, Physics) Nate Eisenberg (UG, math)

AI/Computer Vision

Alan Yuille, PhD

Seyoun Park, PhD

Yixiao Zhang

Akoya collaborators

Cliff Hoyt, MS

Chi Wang

BMS collaborators

Robin Edwards, MD

SIDNEY KIMMEL COMPREHENSIVE CANCER CENTER

BLOOMBERG~KIMMEL INSTITUTE FOR CANCER IMMUNOTHERAPY

Institute for Data Intensive Engineering and Science

HARRY J. LLOYD

CHARITABLE TRUST