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AstroPath: Atlas of Cancer Cells
• Astronomy meets Pathology

• Project started by Prof. Janis Taube (JHMI BKI) and Alex Szalay (JHU IDIES)
• Studying the tumor microenvironment to understand cancer immunotherapy

• Spatial interactions of activated T cells and tumor near the tumor boundaries
• Transitioning to the “industrial revolution”
• Goal: increase data collection by a factor of >1,000

• 400GB mosaic of 35-band multiplex images/slide (from 10 to 2000 images/slide)
• 7 markers (lineage + PD-1, PD-L1), more markers via additional panels
• Use a farm of automated microscopes => 2PB/year
• Heavy use of parallel processing

• Parallels sky surveys (as of 20 years ago)
• “Disruptive assistance” from astronomy to pathology
• Using techniques astronomers learned the hard way (flat field, unwarp, calibrate)

• Tumor boundaries, cell geometries represented as GIS polygons
• Dynamic computation of nearest neighbors, spatial relations
• Interactive viewer like the SkyServer, or Google Maps
• Processing workflows mostly automated
• Working on validating a large enough training set for Deep Learning
• Databases linked to SciServer, collaborative Jupyter, Keras/TensorFlow, R
• Collaboration with Akoya BioSciences (microscopes)



Sloan Digital Sky Survey

“The Cosmic Genome Project”

• Started in 1992, finished in 2008
• Data is public

• 2.5 Terapixels of images => 5 Tpx of sky
• 10 TB of raw data => 100TB processed
• 0.5 TB catalogs => 35TB in the end

• Database and spectrograph 
built at JHU (SkyServer)
• Now SDSS-4, data served from JHU



Skyserver

Prototype in 21st Century data access
• 2.8B web hits in 16 years
• 414M external SQL queries
• 7,000 refereed papers and 450K citations 
• 5,000,000 distinct users vs. 15,000 astronomers
• The emergence of the “Internet Scientist”
• The world’s  most used astronomy facility today
• Collaborative server-side analysis 

done by 9,000 astronomers
• Morphed into the SciServer recently

Jim Gray



From Stars to Cells

• Strong parallels between medicine today and astronomy 25 years ago
• Stars and galaxies are like the cells in pathology
• Multicolor photometry, image segmentation, locality
• Spatial relations, spatial searches, outlines

• Deep links to the raw files
• Astronomy lessons: 
• Statistical analyses and collaboration easier in DB than flat files
• Find a common processing level that is “good enough” 

and earn the TRUST of the community
• Automation is needed for statistical reproducibility at scale
• Scaling out was much harder than we ever thought
• Moving many terabytes of data is hard



This will require:

• Bespoke approaches to cell segmentation, image analysis, and 
data management
• Focus on scaling workflow 



• 1226 High Powered Fields, 200GB / slide,  1344x1004 pixels, at 0.5μ/pix
• 1.6B pixels x 35 narrow band filters = 60B pixels /slide
• Overlaps provide repeated segmentations and measurements for 

intrinsic validation and quality control
• 800-1000 times more data collected for each slide

Our First Slide



Geometry: Overlaps and Primary Regions

• Primary area is the part of a field closest to its center.
• These form a seamless 

tiling of the whole area
• Cells detected here form

the statistical sample
• Overlaps are observed 

multiple times
• Secondary cells serve as 

QA tests to determine 
internal uncertainties



Rationale Behind Overlaps

• Overlaps provide independent photons from the same cells
• Repeated measurements – able to determine uncertainties 

in individual cell fluxes
• More overlaps: better signal-to-noise
• Too much overlap: waste of resources

• Measuring systematic errors
• Microscope systematic errors largest in the corners: 

overlaps give information on how to correct them
Questions:

• How can we justify how much overlap should we take
• Overlaps must be big enough to characterize microscope model
• But too much overlap is costly
• Statistical error 1/sqrt(N), good balance between primary and

secondary objects
• How can we use it in practice

20% is the optimum!



Using the Overlap Areas for Quality Control

• Signs of uncorrected image warping (“pincushion”)
• Developed lens model and corrected the image



Automated Alignment of Image Mosaics

• The Vectra 3 microscope has a positioning “jitter” (3-6 pixels)
• Solved for optimal relative shifts of each pair of overlapping fields
• Consider each shift as a spring
• Pin down center, and let physics work -> equilibrium (minimum energy)



Improve Flat Fielding

• Originally: smoothed stack of 8,000 
raw HPF images in the 35 filters
• Range of flat field correction aligns

with the broad- and narrow filters
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Imaging Improvements

• Switching to Python packages from Matlab
• Better Flatfield model (M. Eminizer)
• Better Warping corrections (M. Eminizer)
• Capture all the Akoya XML metadata (R. Wilton)
• Substantially improve image stitching accuracy (H. Roskes)
• Cross-registration of different imaging modalities (J. Doyle)
• Built whole slide visualization and used it for QA (D. Medvedev)
• Data processing + loading is almost fully automated with multi-level 

logging, arbitrarily parallel design, increasing use of GPUs (B. Green)



Spatial Features in the DB

• Represented as spatial polygons, 
using GIS grammar
• Geometries represented
• HPF outlines and primary regions
• Manual annotation of good tissue
• Manual annotation of tumor 

boundaries
• Automatic tumor boundaries
• Membrane outline for each cell
• Nucleus outline for each cell

• Distances and areas
• Each cell has its signed distance 

from tumor boundary computed
• Areas of different buffers around

tumor boundary precomputed
• Fractional area of each HPF inside 

good tissue and tumor computed



Annotations and Buffer Regions



Precomputed Neighbors



ContactNeighbors

insert ContactNeighbors with (tablock)
select n.*
from Neighbors n, CellGeom a, CellGeom b
where n.c1 = a.cellid
and n.c2 = b.cellid
and n.dist<=50
and n.sampleid=@sampleid
and a.btype=0
and b.btype=0
and a.geom.STDistance(b.geom)<2



Data Analysis Developments

• Random samples extremely useful for estimating cell density
in complex geometries
• E.g. how far inside the regression area, and how far from tumor
• Now added precomputed distance from regression boundary

• Perform two queries and a division
i. Build histogram of distances of the real cell count
ii. Build identical histogram of random cells with known density
iii. Their ratio is the density of the cells of interest in each distance  bin

• Works with arbitrary geometries
• Working to introduce more advanced spatial statistics and ML tools

• Correlations, mark-correlations, neighbor statistics, tSNE, UMAP
• Starting to look at genomics integration (w. Alex Baras)

0

0.005

0.01

0.015

0.02

0.025

-500 -400 -300 -200 -100 0 100 200 300 400 500

Pr
ob
ab
ilit
y

Distance from tumor-stroma boundary (µm)

StromaTumor



CellView: Designed for Speed

• Images built from hierarchical DeepZoom tiles (256x256)
• What is different from others that 

we use a lightweight client, all 
heavy lifting is done server-side
• We store the tiles of the original 

8 component layers
• They are mixed on the server, using

a user-defined color mixing
• These can be saved as presets



SciServer Integration

• The database is now linked to the SciServer (JHU data analytics platform)
• Collaborative sharing
• Enables easy data aggregation

• With genomics etc
• Each user can have their own DB

for value added data, linked to 
main database

• Various options:
• CasJobs/MyDB (SQL access)
• Compute (Python, R)
• Compute Jobs (queues)
• Preconfigured containers with AI

• PyTorch
• Tensorflow
• Choice of Python2, Python3
• Geo (spatial tools)

sciserver.org



Current data in the database
• 3 Cohorts, 235 slides
• 84,320 High Powered Fields
• 226M detected cells
• 97M unique cells
• 3.5B neighboring cell pairs precomputed
• 8.7 trillion pixels  (whole SDSS was 6.5 Tpixels!)
• Additional 200+ slides already scanned

with multiple tumor types, processing in 
various stages



Conclusions

• Early results indicate that mIF assays are 
reproducible

• Found a predictive biomarker for immuno-
therapy using AstroPath (Science, June 11, 2021)

• Next generation of tissue-based biomarkers are 
likely to be identified using large, well-curated 
datasets

• Established a standardized protocol to process 
thousands of tissue samples per year on many 
microscopes

• Developed a scalable facility to produce 
petabytes of robust tissue imaging data on par 
with large sky surveys

• Working towards an Open Cancer Cell Atlas with 
many billions of cells
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